山東大學(xué)生命科學(xué)學(xué)院導(dǎo)師:夏光敏

發(fā)布時(shí)間:2021-10-09 編輯:考研派小莉 推薦訪問(wèn):
山東大學(xué)生命科學(xué)學(xué)院導(dǎo)師:夏光敏

山東大學(xué)生命科學(xué)學(xué)院導(dǎo)師:夏光敏內(nèi)容如下,更多考研資訊請(qǐng)關(guān)注我們網(wǎng)站的更新!敬請(qǐng)收藏本站,或下載我們的考研派APP和考研派微信公眾號(hào)(里面有非常多的免費(fèi)考研資源可以領(lǐng)取,有各種考研問(wèn)題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費(fèi)答疑,助各位考研一臂之力,爭(zhēng)取早日考上理想中的研究生院校。)

山東大學(xué)生命科學(xué)學(xué)院導(dǎo)師:夏光敏 正文


  夏光敏 教授
  博士生導(dǎo)師
  生命科學(xué)學(xué)院黨委書(shū)記兼副院長(zhǎng)
  0531-88364525 13082745752
  xiagm@sdu.edu.cn
  
  教育背景
  1987年山東大學(xué)研究生畢業(yè)留校工作至今 1996年澳大利CSIRO植物分子生物學(xué)實(shí)驗(yàn)室訪問(wèn)學(xué)者 2001年英國(guó)John Innes Centre訪問(wèn)學(xué)者。
  現(xiàn)任教育部生物技術(shù)學(xué)科教學(xué)指導(dǎo)委員會(huì)委員,山東省植物生理學(xué)會(huì)副理事長(zhǎng),中國(guó)植物生理學(xué)會(huì)理事及植物生物技術(shù)專業(yè)委員會(huì)主任,中國(guó)農(nóng)業(yè)生化與分子生物學(xué)學(xué)會(huì)理事,中國(guó)細(xì)胞生物學(xué)會(huì)會(huì)員,中國(guó)遺傳學(xué)會(huì)會(huì)員,國(guó)際組織培養(yǎng)與生物技術(shù)學(xué)會(huì)會(huì)員。
  
  研究方向
  細(xì)胞生物學(xué)專業(yè),植物細(xì)胞與基因工程方向;以及遺傳學(xué)專業(yè),植物細(xì)胞與分子遺傳方向。主要從事小麥及草類的細(xì)胞工程和基因工程育種及相關(guān)的基礎(chǔ)理論研究。在國(guó)際上首次建立了小麥體細(xì)胞雜交創(chuàng)制漸滲系育種新技術(shù), 利用此技術(shù)創(chuàng)制了一批各具特色的育種新種質(zhì);利用這些新材料,進(jìn)行了體細(xì)胞雜種漸滲系的發(fā)育、遺傳、外源基因漸滲、基因突變、基因表達(dá)變異和表觀遺傳學(xué)變化以及耐逆和優(yōu)質(zhì)的功能基因研究;承擔(dān)研究生的植物功能基因組專題及生命科學(xué)前沿進(jìn)展等課程。
  
  主講課程:
  植物功能基因組專題及生命科學(xué)前沿進(jìn)展
  培養(yǎng)研究生:(含聯(lián)合培養(yǎng)研究生)
  已經(jīng)培養(yǎng)博士研究生20多人,再讀博士研究生10余人。
  與美國(guó)Oklahoma大學(xué)、美國(guó)農(nóng)業(yè)部USDA-ARS,美國(guó)The Samuel Roberts Noble Foundation,及澳大利亞Adelaide大學(xué)等聯(lián)合培養(yǎng)博士生6人。
  
  本人研究生從事的工作領(lǐng)域:
  作物遺傳育種,作物功能新基因的分離與功能鑒定,植物細(xì)胞工程與育種,植物基因工程與育種,作物分子生物學(xué)研究
  
  承擔(dān)課題
  目前主持國(guó)家轉(zhuǎn)基因?qū)m?xiàng),國(guó)家自然科學(xué)基金重點(diǎn)和面上項(xiàng)目、國(guó)家863項(xiàng)目,參加國(guó)家973項(xiàng)目,國(guó)家支撐計(jì)劃等。
  1.抗旱、耐鹽轉(zhuǎn)基因小麥新種質(zhì)創(chuàng)建,國(guó)家轉(zhuǎn)基因?qū)m?xiàng),2008-2010,300萬(wàn)
  2.小麥漸滲系耐鹽新基因的鑒定,國(guó)家轉(zhuǎn)基因?qū)m?xiàng), 2009-2010,350萬(wàn)
  3.小麥體細(xì)胞雜交新品種耐鹽的功能基因研究,2005-2009,國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目,150萬(wàn)
  4.耐逆性狀分子設(shè)計(jì)和育種元件創(chuàng)新,國(guó)家973,2006-2010,58萬(wàn)
  5.作物應(yīng)答低溫、高鹽的分子機(jī)制,國(guó)家973,2009-2014,52萬(wàn)
  6.小麥體細(xì)胞雜種漸滲系HMW-GS基因的等位變異,國(guó)家自然科學(xué)基金項(xiàng)目,2009-2011,33萬(wàn)
  
  研究成果及發(fā)表論文
  長(zhǎng)期從事小麥及草類的細(xì)胞有基因工程研究,為小麥體細(xì)胞雜交技術(shù)及其機(jī)制,雜種新種質(zhì)、新品種的首創(chuàng)者,該技術(shù)2007年獲得國(guó)家發(fā)明專利(ZL200410075773.2)。選育了國(guó)際首例高產(chǎn)、耐鹽/耐旱的小麥漸滲系新品種山融3號(hào)(該品種被定為2006年山東省良種主導(dǎo)品種)。小麥體細(xì)胞雜交技術(shù)2005年通過(guò)董玉琛院士等國(guó)內(nèi)同行專家的鑒定,“是小麥生物技術(shù)育種技術(shù)上一項(xiàng)重要突破,總體研究達(dá)到國(guó)際領(lǐng)先水平。以上研究在國(guó)際、全國(guó)會(huì)議上作大會(huì)報(bào)告10次,“小麥不對(duì)稱體細(xì)胞雜交機(jī)制及雜種遺傳和基因組研究” 獲2006年山東省唯一的自然科學(xué)一等獎(jiǎng)(第一位)。在國(guó)內(nèi)首次建立了小麥的基因槍轉(zhuǎn)化和農(nóng)桿菌介導(dǎo)轉(zhuǎn)化技術(shù),與中國(guó)農(nóng)科院合作的“大麥BYDV轉(zhuǎn)化小麥(完成基因槍轉(zhuǎn)化小麥部分)獲得抗病新種質(zhì)”被科技部評(píng)選為1995年全國(guó)十大科技成就。在國(guó)內(nèi)率先建立了利用該技術(shù)轉(zhuǎn)化小麥胚性愈傷組織的體系, 經(jīng)過(guò)近6年的研究, 又建立了農(nóng)桿菌介導(dǎo)小麥苗端轉(zhuǎn)化體系,該項(xiàng)新技術(shù)2006年獲得國(guó)家發(fā)明專利(ZL200410075774.7). 目前已經(jīng)獲得大量轉(zhuǎn)入抗病、耐鹽、優(yōu)質(zhì)等轉(zhuǎn)基因的后代,并且獲批環(huán)境釋放,為小麥的基因工程育種奠定了基礎(chǔ)。作為第一作者和通訊作者發(fā)表在本領(lǐng)域主流SCI源刊物上50余篇,總IF 100 以上,被引用250多次,其中3篇文章分別被他引35,40,40和次以上,兩篇為雜志的2003-2008的TOP 3和TOP 10;受邀參編國(guó)際專著3部。
  
  獲獎(jiǎng)項(xiàng)目:
  “小麥不對(duì)稱體細(xì)胞雜種的遺傳和基因組研究”2006年山東省自然科學(xué)一等獎(jiǎng)(第一位)“小麥不對(duì)稱體細(xì)胞雜交創(chuàng)制漸滲系新技術(shù)”,2008年教育部技術(shù)發(fā)明二等獎(jiǎng)(第一位)
  
  發(fā)表的SCI論文:(*通訊作者)
  1. Peng, Z.Y., Wang, M.C., Li, C.L., Li, F., Liu, C., and Xia, G.M. 2009, A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Molecular & Cellular Proteomics, 10.1074mcp.M900052-MCP200 IF=8.834
  2. Chen FG, Liu S, Zhao F, Xu C, Xia G. 2009, Molecular characterization of the low-molecular weight glutenin subunit genes of tall wheatgrass and functional properties of one clone Ee34. Amino Acids, DOI: 10.1007/s00726-009-0307-y IF=4.132
  3. Liu H, Liu S, Xia G. Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass. 2009, Theor. Appl. Genet. 118(6):1193-1198. IF=3.490
  4. Cui H, Yu Z, Deng J, Gao X, Sun Y, Xia G. 2009, Introgression of bread wheat chromatin into tall wheatgrass via somatic hybridization. Planta. 229(2):323-330,IF=3.088
  5. Chen FG, Zhao F, Liu S, Xia G*. 2009, The γ-gliadin gene content of a derivative from a somatic introgression line II-12 derived from Triticum aestivum and Agropyron elongatum. Mol Breeding, DOI: 10.1007/s11032-009-9275-x. IF=2.008
  6. Han L, Zhou C, Shi J, Zhi D, Xia G. 2009, Ginsenoside Rb1 in asymmetric somatic hybrid calli of Daucus carota with Panax quinquefolius. Plant Cell Reports. 28(4):627-638.IF=1.946
  7. Guangmin Xia* 2009,Progress of chromosome engineering mediated by asymmetric somatic hybridization. Journal of Geneticsand Genomics, 36(9):547-556(特邀綜述). IF=0.358
  8. Shan, L., Li, C.L., Chen, F., Zhao, S.Y., and Xia, G.M. 2008. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ. 31, 1128 - 1137. IF=4.666
  9. Wang, M.C., Peng, Z.Y., Li, C.L., Li, F., Liu, C., and Xia, G.M. 2008. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8, 1470 - 1489. IF=4.586
  10. Liu, S.W., Gao, X., and Xia, G.M. 2008. Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding. Theor. Appl. Genet. 116, 325-334. IF=3.490
  11. Chen, F.G., Xu, C.H., Chen, M.Z., Wang, Y.H., and Xia, G.M. 2008. A new α-gliadin gene family for wheat breeding: somatic introgression line II-12 derived from Triticum aestivum and Agropyron elongatum. Mol. Breeding, 2008, 22(4): 675-685. IF=2.008
  12. Liu, S.W., Gao, X., Lu, B.R., and Xia, G.M. 2008. Characterization of the genes coding for the high molecular weight glutenin subunits in Lophopyrum elongatum. Hereditas 145, 48-57. IF=1.175
  13. Wang, M.Q., Zhao, J.S., Peng, Z.Y., Guo, W., Wang, Y., Wang, L., and Xia, G.M. 2008. Chromosomes are eliminated in the symmetric fusion between Arabidopsis thaliana L. and Bupleurum scorzonerifolium Willd. Plant Cell Tiss Organ Cult 92, 121-130. IF=1.017
  14. Liu, S.W., Zhao, S.Y., Chen, F.G., and Xia, G.M. 2007. Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. BMC Evol. Biol. 7, 76-83. IF=4.46
  15. Chen, F.G., Luo, Z., Zhang, Z.G., Xia, G.M., and Min, H.X. 2007. Variation and potential value in wheat breeding of low-molecular-weight glutenin subunit genes cloned by genomic and RT-PCR in a derivative of somatic introgression between common wheat and Agropyron elongatum. Mol. Breeding 20, 141-152. IF=2.357
  16. Zhao, J.S., Zhi, D.Y., Xue, Z.Y., Liu, H., and Xia, G.M. 2007. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. J. plant Physiol. 164, 1377-1383. IF=1.403
  17. Cai, Y.F., Xiang, F.N., Zhi, D.Y., Liu, H., and Xia, G.M. 2007. Genotyping of somatic hybrids between Festuca arundinacea Schreb. and Triticum aestivum L. Plant Cell Rep. 26, 1809-1819. IF=2.173
  18. Deng, J.Y., Cui, H.F., Zhi, D.Y., Zhou, C.E., and Xia, G.M. 2007. Analysis of remote asymmetric somatic hybrids between common wheat and Arabidopsis thaliana. Plant Cell Rep., 1233-1241. IF=2.173
  19. Zhao, J.S., Ren, W., Zhi, D.Y., Wang, L., and Xia, G.M. 2007. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26, 1521-1528. IF=2.173
  20. Zhou, C.E., Xia, G.M., Zhi, D.Y., and Chen, Y. 2006. Genetic characterization of asymmetric somatic hybrids between Bupleurum scorzonerifolium Willd and Triticum aestivum L.: potential application to the study of the wheat genome. Planta 223, 714-724. IF=3.238
  21. Liu, H., Shi, L., Zhao, J.S., and Xia, G.M. 2006. Genetic characteristic of HMW-GS in somatic hybrid wheat lines - potential application to wheat breeding. J. Agric. Food Chem. 54, 5007 -5013. IF=2.532
  22. Zhao, T.J., Zhao, S.Y., Chen, H.M., Zhao, Q.Z., Hu, Z.M., Hou, B.K., and Xia, G.M. 2006. Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep. 25, 1199-1204. IF=1.727
  23. Chen, F.-G., Zhi, D.-Y., and Xia, G.-M. 2005. Wheat amino acid analysis in single cells by intracellular FITC- derivatization with PEG. Electrophoresis 26, 4204-4205. IF=4.04
  24. Luo, Z., Chen, F.G., Feng, D.S., and Xia, G.M. 2005. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. Theor. Appl. Genet. 111, 272-280. IF=3.063
  25. Wang, J., Xiang, F.N., and Xia, G.M. 2005. Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line. Planta 221, 277-286. IF=2.963
  26. Chen, F.-G., Zhi, D.-Y., and Xia, G.-M. 2005. Analysis of amino acids in individual wheat embryonic protoplast. Amino acids 29, 235-239. IF=2.78

  27. Cheng, A.X., Cui, H.F., and Xia, G.M. 2006. Construction of a primary RH panel of Italian ryegrass genome via UV-induced protoplast fusion. Plant Bio. 8, 673-679. IF=1.910
  28. Zhou, A.F., and Xia, G.M. 2005. Introgression of the Haynaldia villosa genome to γ-ray induced asymmetric somatic hybrids of wheat. Plant Cell Rep. 24, 289-296. IF=1.727
  29. Wang, M.Q., Xia, G.M., and Peng, Z.Y. 2005. High UV-tolerance with introgression hybrid formation of Bupleurum scorzonerifolium Will. Plant Sci. 168, 593-600. IF=1.621
  30. Shan, L., Zhao, S.Y., and Xia, G.M. 2005. Cloning of the full-length cDNA of the wheat involved in salt stress--root hair defective 3 gene (RHD3). J. Integr. Plant Biol. 47, 885-891 IF=0.515
  31. Chen, S.Y., Liu, S.W., Xu, C.H., Chen, Y.Z., and Xia, G.M. 2004. Heredity of chloroplast and nuclear genomes of asymmetric somatic hybrid lines between wheat and couch grass. ACTA Botan. Sin. 46, 110-115. IF=0.321
  32. Chen, S.Y., Xia, G.M., Quan, T.Y., and Xiang, F.N. 2004. Studies on the salt-tolerance of F3-F6 hybrid Lines originated from somatic hybridization between common wheat and Thinopyrum ponticum. Plant Sci. 167, 773-779.IF=1.631
  33. Cheng, A.X., and Xia, G.M. 2004. Somatic hybridization between common wheat and Italian ryegrass. Plant Sci. 166, 1219-1226. IF=1.631
  34. Cheng, A.X., Xia, G.M., and Chen, H.M. 2004. DNA transfer from wild millet to common wheat by asymmetric somatic hybridization. ACTA Botan. Sin. 46, 1114-1121. IF=0.321
  35. Cheng, A.X., Xia, G.M., Zhi, D.Y., and Chen, H.M. 2004. Intermediate fertile Triticum aestivum (+) Agropyron elongatum somatic hybrids are generated by low doses of UV irradiation. Cell Research 14, 86-91.IF=2.161
  36. Feng, D.S., Chen, F.G., Zhao, S.Y., and Xia, G.M. 2004. Study on coding genes of high-molecular-weight glutenin subunits in decaploid Agropyron elongatum (Host) Neveski. ACTA Botan. Sin. 46, 489-496. IF=0.321
  37. Feng, D.S., Xia, G.M., Zhao, S.Y., and Chen, F.G. 2004. Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theor Appl Genet 110, 136-144. IF=3.063
  38. Li, C.L., Xia, G.M., Xiang, F.N., Zhou, C.E., and Cheng, A.X. 2004. Regeneration of asymmetric somatic hybrid plants from the fusion of two types of wheat with Russian wildrye. Plant Cell Rep. 23, 461-467.IF=1.42
  39. Wang, J., Xiang, F.N., and Xia, G.M. 2004. Transfer of small chromosome fragments of Agropyron elongatum to wheat chromosome via asymmetric somatic hybridization. Sci. China Ser. C 47, 434-441.IF=0.482
  40. Xiang, F.N., Xia, G.M., Zhi, D.Y., Wang, J., Hu, N., and Chen, H.M. 2004. Hybrid plant regeneration in relation to the nuclear and cytoplasmic genomes of wheat and Setaria italica. Genome 47, 680-688. IF=2.07
  41. Xue, Z.-Y., Zhi, D.-Y., Xue, G.-P., Zhang, H., Zhao, Y.-X., and Gang-Min Xia*, 2004. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167, 859-899.IF=1.605
  42. Xia, G.M., Xiang, F.N., Zhou, A.F., Wang, H., and Chen, H.M. 2003. Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor. Appl. Genet. 107, 299-305. IF=2.981
  43. Xiang, F.N., Xia, G.M., and Chen, H.M. 2003. Effect of UV dosage on somatic hybridization between common wheat (Triticum aestivum L.) and Avena sativa L. Plant Sci. 164, 697-707. IF=1.389
  44. Xiang, F.N., Xia, G.M., and Chen, H.M. 2003. Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L. Sci. China Ser. C, 243-252. IF=0.481
  45. Xu, C.H., Xia, G.M., Zhi, D.Y., Xiang, F.N., and Chen, H.M. 2003. Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization. Plant Sci. 165, 1001-1008. IF=1.389
  46. Zhou, A.F., Xia, G.M., Chen, X.L., and Chen, H.M. 2002. Produciton of somatic hybrid plants between two types of wheat protoplasts and the protoplasts of Haynaldia villosa. Acta Botan. Sin. 44, 1004-1008.
  47. Yue, W., and Xia, G.M. 2001. Transfer of salt tolerance from Aeleuropus littoralis sinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Sci. 161, 256-262.
  48. Zhou, A.F., Xia, G.M., and Chen, H.M. 2001. Comparative study of symmetric and asymmetric somatic hybridization between common wheat and Haynaldia villosa. Sci. China Ser. C, 294-304.
  49. Zhou, A.F., Xia, G.M., Zhang, X., Chen, H.M., and Hu, H. 2001. Analysis of chromosomal and organellar DNA of somatic hybrids between Triticum aestiuvm and Haynaldia villosa Schur. Mol. Genet. Gen. 265, 387-393.
  50. Xia, G.M., Li, Z.Y., Wang, S.L., Xiang, F.N., Chen, P.D., and Liu, D.J. 1998. Asymmetric somatic hybridization between haploid common wheat and UV irradiated Haynaldia villosa. Plant Sci. 137, 217-223.
  51. Xia, G.M., and Chen, H.M. 1996. Plant regeneration from intergeneric somatic hybridization between Trticum aestivum L and Leymus chinensis (Trin) Tzvel. Plant Sci. 120, 197-203.
  52. Xia, G.M., Wang, H., and Chen, H.M. 1996. Plant regeneration from intergeneric asymmetric somatic hybridization between wheat (Triticumn aestivum L.) and Russian wildrye (Psathyrostachys juncea (Fisch) Neweski) and couch grass (Agropyron elongatumn Host Neviski). Chin. Sci. Bull. 41, 1382-1386.
  53. Zhou, A.F., Xia, G.M., and Chen, H.M. 1996. Asymmetric somatic hybridization between Triticum aestivum and Haynaldia villosa Schur. Sci. China Ser. C 39, 617-626.
  54. Guo, G.Q., Xia, G.M., and Li, Z.Y. 1990. Direct somatic embryogenesis and plant-regeneration from protoplast-derived cells of wheat (triticum aestivum). Sci China Ser. B 34, 438-445.
  合作發(fā)表的SCI論文:
  55. Xianzhong Huang1,6, Qian Qian2,6, Zhengbin Liu1, Hongying Sun1, Shuyuan He1, Da Luo3, Guangmin Xia4, Chengcai Chu5, Jiayang Li5 & Xiangdong Fu1,2009 NATURE GENETICS,41:494-497,IF=30.259
  56. Bottley, A., Xia, G.M., and Koebner, R.M.D. 2006. Homoeologous gene silencing in hexaploid wheat. Plant J. 47, 897-906. IF=6. 565

  *如果發(fā)現(xiàn)導(dǎo)師信息存在錯(cuò)誤或者偏差,歡迎隨時(shí)與我們聯(lián)系,以便進(jìn)行更新完善。

以上老師的信息來(lái)源于學(xué)校網(wǎng)站,如有更新或錯(cuò)誤,請(qǐng)聯(lián)系我們進(jìn)行更新或刪除,聯(lián)系方式

添加山東大學(xué)學(xué)姐微信,或微信搜索公眾號(hào)“考研派小站”,關(guān)注[考研派小站]微信公眾號(hào),在考研派小站微信號(hào)輸入[山東大學(xué)考研分?jǐn)?shù)線、山東大學(xué)報(bào)錄比、山東大學(xué)考研群、山東大學(xué)學(xué)姐微信、山東大學(xué)考研真題、山東大學(xué)專業(yè)目錄、山東大學(xué)排名、山東大學(xué)保研、山東大學(xué)公眾號(hào)、山東大學(xué)研究生招生)]即可在手機(jī)上查看相對(duì)應(yīng)山東大學(xué)考研信息或資源。

山東大學(xué)考研公眾號(hào) 考研派小站公眾號(hào)
山東大學(xué)

本文來(lái)源:http://www.qiang-kai.com/shandongdaxue/daoshi_494568.html

推薦閱讀